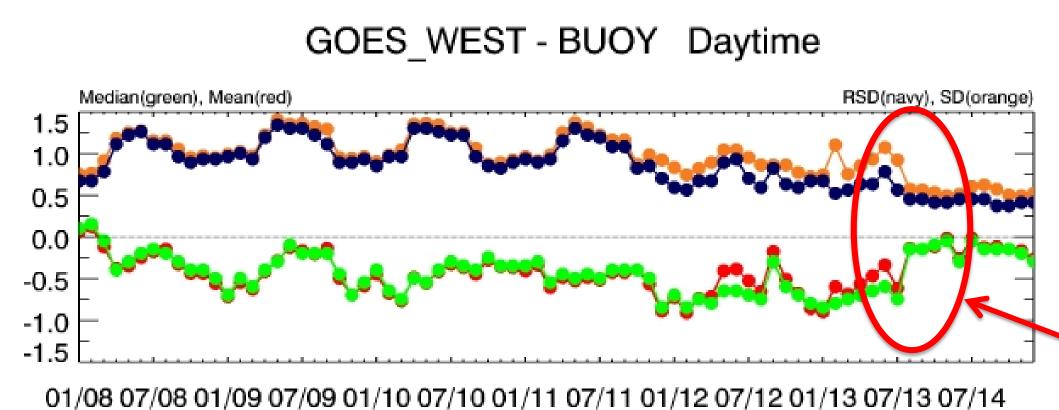


Reprocessing NOAA's Geo-Polar blended 5km SST from 2004-2014


Xiaofang Zhu¹, Eileen Maturi², Jonathan Mittaz³, Andy Harris⁴, Mark Eakin⁵, Alexander Ignatov², Xinjia Zhou⁶

- 1. Global Science and Technology Inc xiaofang.zhu@noaa.gov
- 2. NOAA/NESDIS/STAR 3. University of Reading, UK 4.ESSIC/University of Maryland 5. NOAA/Coral Reef Watch 6. CIRA/Colorado State University

Abstract

Efforts are being carried out at NOAA/NESDIS/STAR to reprocess the global geostationary and polar orbiting 5km SST data using state-ofthe-art NOAA operational algorithms from 2004 to present. For geostationary data, the latest operational algorithm calculates SST by utilizing a new physical retrieval scheme based on modified total least squares (MTLS, Koner et al., 2014) and a probabilistic (Bayesian) approach for cloud masking (Merchant et al., 2005). The geostationary satellites being reprocessed include GOES (GOES-9, 10, 11,12,13 &15) satellites from NOAA, MTSAT (MTSAT1-R and MTSAT-2) satellites from Japan Meteorological Agency (JMA), and also Meteosat (8, 9 and 10) from Eumetsat during the 10-year period. The total raw data volume for geostationary sensors that will be reprocessed is ~200TB in various data formats (HRIT, GVAR, MCIDAS Area File). Reprocessed geostationary SST provides a near complete coverage of the tropics and mid-latitudes with at least hourly time resolution. For the polar orbiting satellites, AVHRR and METOP data are being reprocessed using the Advanced Clear-Sky Processor for Oceans (ASCPO) (Petrenko et al., 2010). The geostationary and polar data are then combined to generate the Geo-Polar blended 5-km SST daily global SST analysis. All level-2 and level-4 products are being validated against global drifting buoy and tropical mooring data, which is archived in NOAA in-situ SST quality monitor (iQuam).

Reprocessing utilizes the new physical retrieval scheme

Significant statistical improvement when switched to the new MTLS (Koner et al, 2014 submitted) retrieval scheme, in July 2013

Time series of the monthly statists of GOES-West and buoy comparisons. The mean(red) and standard deviation (orange) values, along with median(green) and robust standard deviation (navy) are given.

historical datasets for geostationary SST reprocessing

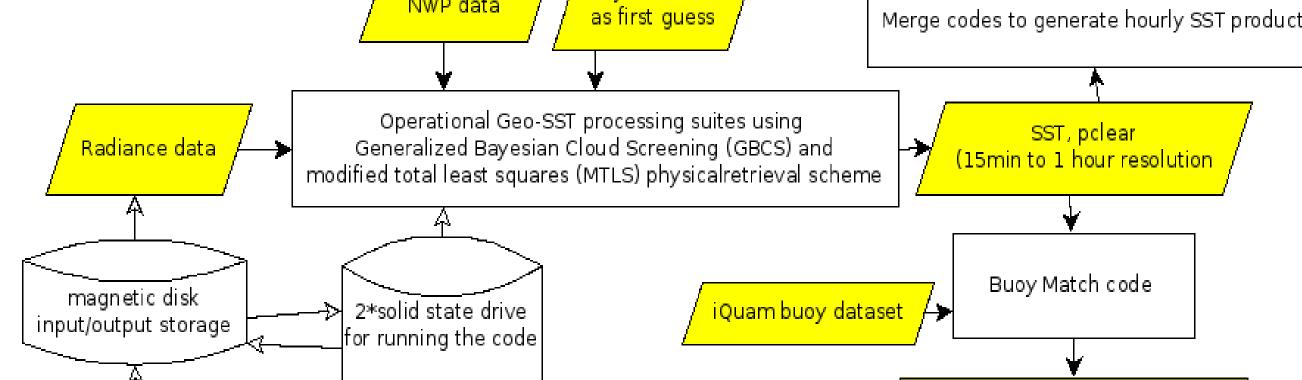
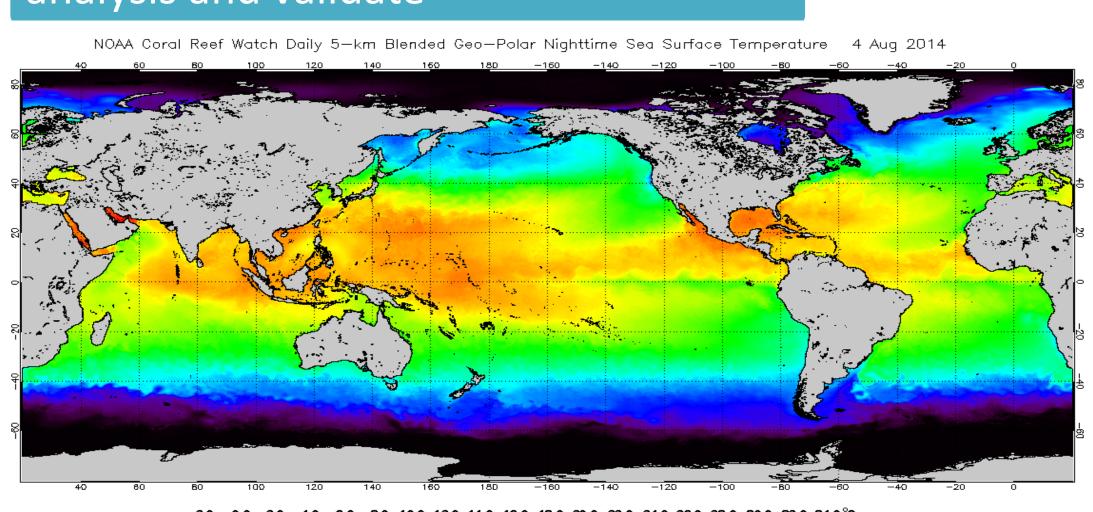

Input	Products and	Platforms	Time	Data format
data type	Agencies		length	we have
	GOES-East (75°	GOES 12	2004-2010	GVAR
Radiance	W),	GOES 13	2010-	McIDAS
data	NOAA/USA		present	Areafile
	GOES-West	GOES 10	2004-2006	GVAR
	(135°W),	GOES 11	2006-2011	GVAR
	NOAA/USA	GOES 15	2011-	McIDAS
			present	Areafile
		GOES-9	2004-2005	GVAR
	MTSAT,	(substitute		
	JMA/Japan	for failed		
	(140°E)	MTSAT-1)		
		MTSAT-1R	2005-2010	HRIT
		MTSAT-2	2010-2014	McIDAS
				Areafile
	MSG	Meteosat 8	2004-2006	HRIT
	(Meterosat	Meteosat 9	2006-2012	HRIT
	Second			+McIDAS
	Generation),			Areafile
	Eumetsat/Euro	Meteosat	2012-	McIDAS
	pe	10	present	Areafile
NWP field	NCEP GFS 26-level,		2004-	
data	NOAA/NCEP		present	HDF
Reference	Reynolds 0.25 degree,		2004-	HDF
SST fields	NOAA/NCDC		present	
buoy	iQuam drifter and tropical mooring dataset,		2004-	NetCDF
dataset			present	
	NOAA/NESDIS			
Table 1 In	nut and valid	ation data	cote data	acadad for

Table.1 Input and validation data sets data needed for reprocessing and validating the geostationary SST reprocessing from 2004 to present. All radiance data needed to be converted to McIDAS AREA files for input.

Approach

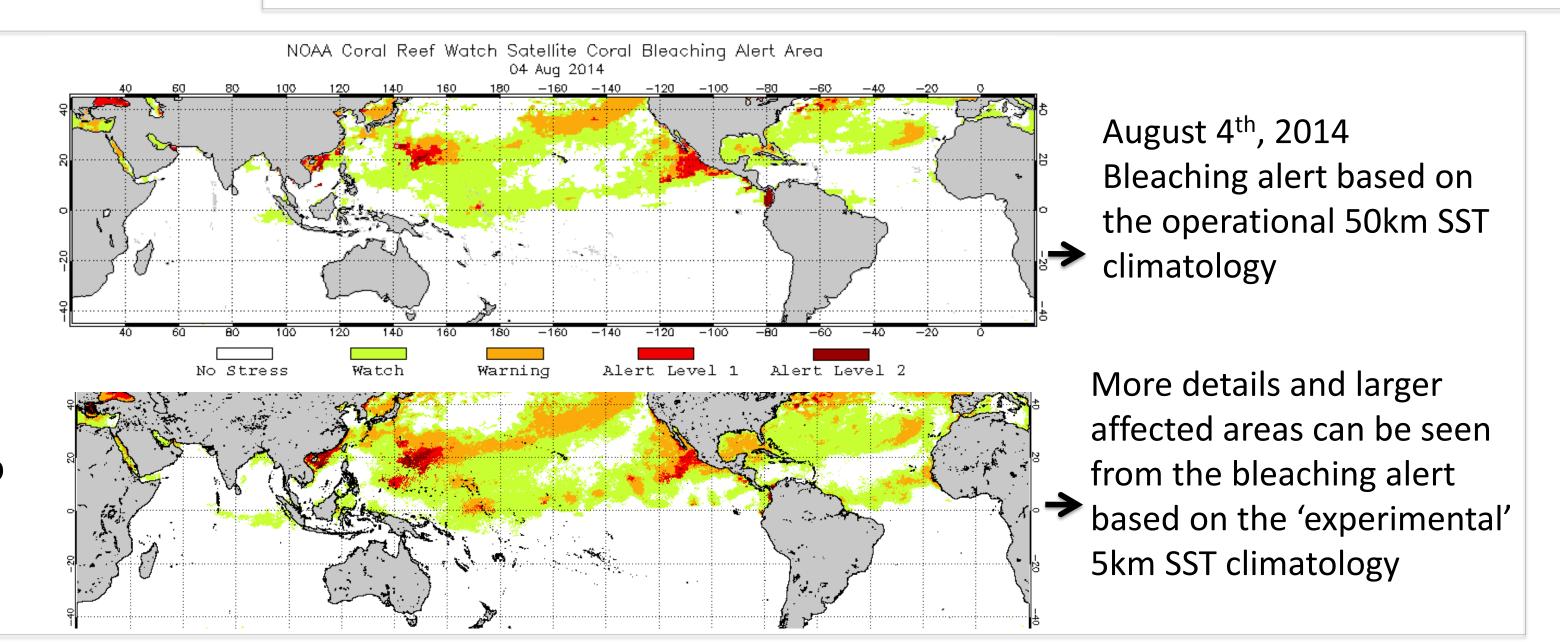
1) Obtain historical datasets



Buoy Match statistics

3) Obtain reprocessed polar data from ACSPO

AVHRR and Metop data reprocessing reprocessed using ASCPO 2.0 (Advanced Clear-Sky Processor for Oceans, Petrenko *et al.*, 2010)


4) Run Geo-Polar blended SST analysis and validate

Sample Geo-Polar blended SST map

Reprocessing will provide an improved 5km global coral maximum monthly SST climatology for coral bleaching prediction at Coral Reef Watch program in NOAA

The current operational SST climatology is based on a twice-weekly 50-km AVHRR SST analysis that was developed in the 1980s, the new algorithm will update it to 5km hourly resolution. We need at least 10-year of reprocessing to generate a climatology. So far there is one 'experimental' climatology which is based on only 2 year data.

References

C. Merchant, A. Harris, E. Maturi, and S. Maccallum. Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. *Q. J. R. Meteorol. Soc.* (2005), 131, pp. 2735–2755